Predation of livestock by wild dogs and dingoes is perceived as a major limitation to enterprise choice and profitability by graziers adjoining Crown Land (National Parks, State Forests etc) in south eastern Australia. The estimated annual expenditure for control of wild dogs (dingoes, dingo/domestic dog hybrids) is $7,000,000, second only to the control of rabbits. Despite this significant expenditure, wild dogs continue to be a major problem for primary producers in south eastern Australia, particularly where properties adjoin Crown Land. Wild dogs in south eastern Australia act as the major distributor of *Echinococcus granulosus* the causative agent of hydatid disease in humans, livestock and wildlife.

Australian dingoes are also under threat of extinction, not through persecution, but through hybridisation with domestic dogs. Hybridisation is particularly evident in south eastern Australia. The incidence of dingoes in wild dog populations impacts on management strategies for agencies charged with the conflicting responsibilities of dingo preservation and wild dog management. Presently the purity of dingo ancestry is assessed on skull measurements from animals that have been killed.

Our project is concerned with, (1) developing an adaptive management plan for wild dogs, particularly at the interface of Crown Land and grazing country (2) determining the prevalence of infection with *E. granulosus* in wild dogs (3) determining the extent of dingo/domestic dog hybridisation.

Historical and current wild dog attack data are being collected from various agencies to prepare a map of the areas of major wild dog activity. Through the use of sand pads on bush tracks and wild dogs tagged with microchips, the movement of 3 populations of wild dogs are being monitored. Faecal samples and intestines are being collected from dead wild dogs and faeces is being collected from dogs caught for tagging. Antigens (coproantigens) of *E. granulosus* are detected in the faeces immunologically. DNA is being collected from blood or tissue samples collected from dead wild dogs and from dogs caught for tagging. This DNA is being analysed to determine the ancestry of the dogs caught.

The historical dog attack data have been collected and are still being analysed.

The sand pad data are still being collected but useful results are starting to arise from the tag and release study in one area. In the northern end of the Kosciuszko National Park 43 wild dogs have been tagged and 12 have been recaptured, 11 still within the Park boundary one outside the boundary. Four were recaptured 2 to 5 days later between 0.5 and 5 km from the first capture, 6 were recaptured 5 to 8 months later between 5 and 25 km from the first capture, 1 dog was caught 1 year later 5 km from the first capture. The dog recaptured outside the Park boundary had moved 35 km.

Almost all (94%) of the faeces from the wild dogs were positive for coproantigens of *E. granulosus*. The DNA analysis has identified dingo/domestic dog hybrids and pure bred dingoes from the samples analysed. The DNA analysis of the samples submitted for testing is incomplete, therefore we cannot yet identify populations of pure bred dingoes.

Wild dog management cannot rely on any one method for control and the use of sand pads for regular monitoring of wild dog activity is important. Wild dogs can be recaptured and the use of microchips is a useful cost effective way of monitoring wild dog movement. There is a high prevalence of *E. granulosus* in the wild dogs in the Kosciuszko and Namadgi National Parks. Through DNA testing it is possible to differentiate between dingoes and dingo/domestic dog hybrids.

We acknowledge the support and assistance of all the other collaborating agencies, Rural Lands Protection Boards of Bombala, Braidwood, Cooma, Gundagai; NSW State Forests; NSW National Parks and Wildlife Service; Department of Land and Water Conservation; Environment ACT; ACT Leaseholders Association; Department Natural Resources and Environment (Victoria).

Email: djenkins@effect.net.au