Concentrate Finishing Affects Muscle Trans-18:1 and CLA Profile of Grass Fed Steers

A Agriculture and Agri-Food Canada, Lacombe Research Centre, Lacombe T4L 1W1, Alberta, Canada
B Agriculte and Agri-Food Canada, Guelph Food Research Centre, Guelph N1G 5C9, Ontario, Canada
C Animal Research Institute, Dpt. Employment, Economic Development and Innovation, Yeerongpilly, Queensland 4105
D Livestock Production, SERIDA, Apdo. 13, 33300 Villaviciosa, Asturias, Spain

Finishing cattle on concentrate can be economical and enhance marbling levels, while finishing on grass improves the profile of muscle fatty acids (FA). Current recommendations for human health are to limit intakes of saturated fats and increase intakes of ω-3 FA. Of current interest are also intermediates in ruminal biohydrogenation of polyunsaturated FA, especially the conjugated linoleic acid (CLA) rumenic acid (cis9,trans11-18:2) and vaccenic acid (trans11-18:1) that have purported roles in the prevention of several diseases (Field et al 2009). These metabolites accumulate in grass-finished beef, while trans-18:1 isomers (notably trans10-18:1) accumulate in concentrate-finished beef and are atherogenic (Bauchart et al 2007). To evaluate the benefits of combining intensive and extensive systems, 24 steers from “Asturiana de los Valles” Spanish breed (heterozygote for the gene responsible for muscular hypertrophy) were reared under grazing conditions (ryegrass/clover pastures) with or without final finishing on barley-based concentrate for either 0 (n=4), 2 (n=12) or 3 months (n=8). Animals were slaughtered commercially at an average weight of 498±8.4 kg.

All samples (longissimus thoracis muscle) were freeze-dried and lipids were extracted using a mixture of chloroform–methanol (1:1, v/v). Lipid aliquots from each muscle were methylated separately using acidic (methanolic HCl) and basic (sodium methoxide) reagents and FA methyl esters were analyzed using GC (acidic & basic) and Ag+-HPLC (basic; Kramer et al 2008).

Increasing the time on concentrate increased the total FA content of meat (0.88% on grass-fed vs average of 1.9% on concentrate-finished) which was reflected in a decrease of polyunsaturated to saturated FA (P/S) and increase of ω-6/ω-3 ratio (Table1). Finishing on grass or with a short period on concentrate (~2 months) enhanced the meat FA profile by decreasing total trans-18:1 and specifically trans10-18:1, while there were no differences in vaccenic acid (trans11-18:1) content. There were no differences in rumenic acid between treatments while an increase was observed in the second most abundant CLA isomer (trans7,cis9-18:2) with increasing time on finishing.

Meat from concentrate-finished animals had higher total FA content in comparison to grass-finished samples. However, pasture-finished beef showed an improved fatty acid profile enabling beef production with a more desirable fatty acid composition for human health.

Table 1. Muscle trans-18:1, CLA and ratios of steers from “Asturiana de los Valles” breeds

<table>
<thead>
<tr>
<th>Months finishing</th>
<th>0 mo</th>
<th>2 mo</th>
<th>3 mo</th>
<th>sem</th>
<th>sign</th>
<th>0 mo</th>
<th>2 mo</th>
<th>3 mo</th>
<th>sem</th>
<th>sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg FAME/100g meat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mg/100g of meat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans10-18:1</td>
<td>1.85b</td>
<td>28.8a</td>
<td>133a</td>
<td>6.607***</td>
<td>0.20c</td>
<td>1.77n</td>
<td>6.34e</td>
<td>0.286***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans11-18:1</td>
<td>22.4</td>
<td>32.8</td>
<td>33.8</td>
<td>4.218ns</td>
<td>2.29</td>
<td>1.86</td>
<td>1.61</td>
<td>0.137ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total trans-18:1</td>
<td>36.9b</td>
<td>85.5b</td>
<td>202b</td>
<td>9.859***</td>
<td>3.82b</td>
<td>4.99b</td>
<td>9.63a</td>
<td>0.310***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis9,trans11-18:2</td>
<td>3.12</td>
<td>5.83</td>
<td>5.71</td>
<td>0.667ns</td>
<td>0.32</td>
<td>0.34</td>
<td>0.27</td>
<td>0.024ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans7,cis9-18:2</td>
<td>0.20c</td>
<td>0.78b</td>
<td>1.53a</td>
<td>0.097***</td>
<td>0.02c</td>
<td>0.05b</td>
<td>0.07a</td>
<td>0.004***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total CLA</td>
<td>4.95</td>
<td>8.93</td>
<td>11.5</td>
<td>0.919ns</td>
<td>0.52</td>
<td>0.53</td>
<td>0.54</td>
<td>0.029ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P/S</td>
<td>0.44c</td>
<td>0.26e</td>
<td>0.17b</td>
<td>0.026**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ω-6/ω-3</td>
<td>2.45c</td>
<td>4.49b</td>
<td>5.97a</td>
<td>0.195***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FAME, FA methyl esters; sem, standard error of the mean; sign, significance; *p<0.05, **p<0.01, ***p<0.001; P/S, polyunsaturated FA/saturated FA. Analyses of finishing by ANOVA (SPSS for Windows).

Email: noelia.aldai@deedi.qld.gov.au; naldai@ae.csic.es